

## Algorithms and Data Structures

Amortized Analysis

Marius Kloft

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- This lecture is not covered in [OW93] but in [Cor03]


## Setting

- SOL setting: Dependent operations
- We have a sequence $Q$ of operations on a data structure
- Searching SOL and rearranging a SOL
- Operations are not independent - by changing the data structure, costs of subsequent operations are influenced
- Conventional WC-analysis produces misleading results
- Assumes all operations to be independent
- Changing search order in a workload does not influence WC
- Amortized analysis analyzes the complexity of any sequence of operations of length $n$
- Or the worst average cost of each operation in any sequence


## Example 1: Multi-Pop

- Assume a stack $S$ with a special op: mpop(k)
- mpop(k) pops min(k, |S|) elements from S
- Assume any sequence Q of operations
- E.g. Q=\{push,push,mpop(k),push,push,push,mpop(k),...\}
- Assume costs $c(p u s h)=1, c(p o p)=1, c(m p o p(k))=k$
- mpop simply calls pop $k$ times
- With $|\mathrm{Q}|=\mathrm{n}$ : What cost do we expect for Q ?
- Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
- In the worst case, $k$ can be $\sim n$ ( $n$ times push, then one mpop( $n$ ))
- Worst case of a single operation is $O(n)$
- Total worst-case cost: O(n²)

Note: Costs only ~2*n

## Problem

- Clearly, the cost of Q is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$, but this is not tight
- A simple thought shows: The cost of Q is in $\mathrm{O}(\mathrm{n})$
- Every element can be popped only once (no matter if this happens through a pop or a mpop)
- Pushing an element costs 1, popping it costs 1
- Within $Q$, we can at most push $O(n)$ elements and, hence, also only pop $O(n)$ elements
- Thus, the total cost is in $O(n)$
- We want to derive such a result in a more systematic manner (analyzing SOLs is not that easy)


## Example 2: Bit-Counter

- We want to generate all bitstrings produced by iteratively adding 1 n-times, starting from 0
- Q is a sequence of „$+1^{\prime \prime}$
- We count as cost of an operation the number of bits we have to flip
- Classical WC analysis
- Assume bitstrings of length k
- Roll-over counter if we exceed $2^{\mathrm{k}}$-1
- A single operation can flip up to $k$ bits
- "1111111" +1
- Worst case cost for Q: O(k*n)

| 00000000 |  |  |
| :--- | :---: | :---: |
| 00000001 | 1 | 1 |
| 00000010 | 2 | 3 |
| 00000011 | 1 | 4 |
| 00000100 | 3 | 7 |
| 00000101 | 1 | 8 |
| 00000110 | 2 | 10 |
| 00000111 | 1 | 11 |
| 00001000 | 4 | 15 |
| 00001001 | 1 | 16 |
| 00001010 | 2 | 18 |
| $\ldots$ |  |  |

## Problem

- Again, this complexity is overly pessimistic / not tight
- Cost actually is in $O(n)$
- The right-most bit is flipped in every operation: cost=n
- The second-rightmost bit is flipped every second time: $n / 2$
- The third ...: n/4
- ...
- Together

$$
\sum_{i=0}^{k-1} \frac{n}{2^{i}}<n * \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 * n
$$

- Two Examples
- Two Analysis Methods
- Accounting Method
- Potential Method
- Dynamic Tables
- SOL - Analysis


## Accounting Analysis

- Idea: We create an account for Q
- Operations put / withdraw a constant amount of "money"
- We choose these amounts such that the current state of the account is always (throughout Q) an upper bound of the actual cost of Q
- Let $c_{i}$ be the true cost of operation $i, d_{i}$ its effect on the account
- We require

$$
\forall 1 \leq k \leq n: \sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} d_{i}
$$

- Especially, the account must never become negative (or the inequality at this point is broken)
- It follows: An upper bound for the account (d) is also an upper bound for the true cost (c)


## Application to mpop

- Assume $d_{\text {push }}=2, d_{\text {pop }}=0, d_{\text {mpop }}=0$
- Clearly, the account can never become zero
- Summing these up yields an upper bound on the real cost
- Clearly, $\mathrm{d}_{\text {push }}$ is an upper bound on $\mathrm{c}_{\text {push }}$ (which is 1 )
- Idea: Whenever we push an element, we pay 1 for the push and 1 for the operation that will (at same later time) pop exactly this element
- It doesn't matter whether this will be through a pop or a mpop
- Thus, when it comes to a pop or mpop, there is always enough money on the account (deposited by previous push's)
- This proves:

$$
\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} d_{i} \leq 2 * n \in O(n)
$$

## Choose d's carefully

- Assume $\mathrm{d}_{\text {push }}=1, \mathrm{~d}_{\text {pop }}=1, \mathrm{~d}_{\text {mpop }}=1$
- Assume Q=\{push,push,push,mpop(3)\}
- $\Sigma \mathrm{c}=6>\Sigma \mathrm{d}=4$
- Assume $d_{\text {push }}=1, d_{\text {pop }}=0, d_{\text {mpop }}=0$
- Assume Q=\{push,push,mpop(2)\}
$-\Sigma \mathrm{c}=4>\Sigma \mathrm{d}=2$
- Assume $d_{\text {push }}=3, d_{\text {pop }}=0, d_{\text {mpop }}=0$
- Fine as well, but not as tight (but also leads to O(n))


## Application to Bit-Counter

- Look at the sequence Q' of flips generated by a sequence Q
- For every +1, we flip exactly once from 0 to 1 and perform a sequence of flips from 1 to 0
- There is no „flip to $1^{\prime \prime}$ if we roll-over

| 00000000 |  |  |
| :--- | :---: | :---: |
| 00000001 | 1 | 1 |
| 00000010 | 2 | 3 |
| 00000011 | 1 | 4 |
| 00000100 | 3 | 7 |
| 00000101 | 1 | 8 |
| 00000110 | 2 | 10 |
| 00000111 | 1 | 11 |
| 00001000 | 4 | 15 |
| 00001001 | 1 | 16 |
| 00001010 | 2 | 18 |
| $\ldots$ |  |  |

## Application to Bit-Counter (Continued)

- Assume $\mathrm{d}_{\text {flip-to- }-1}=2$ and $\mathrm{d}_{\text {flip-to- }-0}=0$
- Clearly, $\mathrm{d}_{\text {fip-to-1 }}$ is an upper bound to $\mathrm{C}_{\text {fip-to-1 }}$
- Idea: When we flip-to-1, we pay 1 for flipping and 1 for the back-flip-to-0 that might happen at some later time in $\mathrm{Q}^{\prime}$
- As we start with only 0 and can backflip any 1 only once, there is always enough money on the account for the flip-to-0's
- Thus, the account is an upper bound on the actual cost
- As every operation in Q can pay at

| 00000000 |  |  |
| :--- | :---: | :---: |
| 00000001 | 1 | 1 |
| 00000010 | 2 | 3 |
| 00000011 | 1 | 4 |
| 00000100 | 3 | 7 |
| 00000101 | 1 | 8 |
| 00000110 | 2 | 10 |
| 00000111 | 1 | 11 |
| 00001000 | 4 | 15 |
| 00001001 | 1 | 16 |
| 00001010 | 2 | 18 |
| $\ldots$ |  |  | most 2 (there is at most 1 flip-to-1), Q is in $O(n)$

- Two Examples
- Two Analysis Methods
- Accounting Method
- Potential Method
- Dynamic Tables
- SOL - Analysis


## Potential Method: Idea

- In the accounting method, we assign a cost to every operation and compare aggregated accounting costs of ops with aggregated real costs of ops
- In the potential method, we assign a potential $\Phi(\mathrm{D})$ to the data structure D manipulated by Q
- As ops from Q change $D$, they also change D's potential
- The trick is to design $\Phi$ such that we can (again) use it to derive an upper bound on the real cost of Q


## Potential Function

- Let $D_{0}, D_{1}, \ldots D_{n}$ be the states of $D$ when applying $Q$
- We define the amortized $\operatorname{cost} \mathrm{d}_{\mathrm{i}}$ of the ith operation as $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- We then can derive the amortized cost of $Q$ as

$$
\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n}\left(c_{i}+\phi\left(D_{i}\right)-\phi\left(D_{i-1}\right)\right)=\sum_{i=1}^{n} c_{i}+\phi\left(D_{n}\right)-\phi\left(D_{0}\right)
$$

- Rough idea: If we find a $\Phi$ such that (a) we obtain formulas for the amortized costs for all individual $d_{\mathrm{i}}$ and (b) $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$, we have an upper bound for the real costs


## Details: Always Pay in Advance

- Operations raise or lower the potential ( $\sim f u t u r e ~ c o s t) ~ o f ~ D ~$
- We need to find a function $\Phi$ such that
- 1: $\Phi\left(D_{i}\right)$ depends on a property of $D_{i}$
- 2: $\Phi\left(\mathrm{D}_{\mathrm{n}}\right) \geq \Phi\left(\mathrm{D}_{0}\right)$ [and we will always have $\Phi\left(\mathrm{D}_{0}\right)=0$ ]
- 3: We can compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ for any possible op
- As within a sequence we do not know its future, we also have to require that $\Phi\left(D_{i}\right)$ never is negative
- Otherwise, the amortized cost of the sequence $\mathrm{Q}[1-\mathrm{i}]$ is no upper bound in the real costs
- Idea: Always pay in advance


## Example: mpop

- We use the number of objects on the stack as its potential
- Then
- 1: $\Phi\left(D_{i}\right)$ depends on a property of $D_{i}$
- 2: $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$ and $\Phi\left(D_{0}\right)=0$
- 3: Compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- If op is push: $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+1=2$
- If op is pop: $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}-1=0$
- If op is mpop(k): $d_{i}=c_{i}$ - \#elements_taken_from_stack $=0$ $\kappa$
e.g., both equaling $k$ if at least $k$
elements are on stack
- Thus, $2^{*} n \geq \Sigma \mathrm{d}_{\mathrm{i}} \geq \Sigma \mathrm{c}_{\mathrm{i}}$ and Q is in $\mathrm{O}(\mathrm{n})$


## Example: Bit-Counter

- We use the number of ' 1 's in the bitstring as its potential
- Then
- 1: $\Phi\left(D_{i}\right)$ depends on a property of $D_{i}$
- 2: $\Phi\left(\mathrm{D}_{\mathrm{n}}\right) \geq \Phi\left(\mathrm{D}_{0}\right)$ and $\Phi\left(\mathrm{D}_{0}\right)=0$
- 3: Compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- Let the i'th operation incur one flip to 1 (or no flip to 1 if roll-over) and $\mathrm{t}_{\mathrm{i}}$ flips to 0
- Thus, $\mathrm{c}_{\mathrm{i}} \leq \mathrm{t}_{\mathrm{i}}+1$
- If $\Phi\left(D_{i}\right)=0$, the this op has flipped all positions to 0 , and previously they were all 1 and we had $\Phi\left(D_{i-1}\right)=k$
- If $\Phi\left(D_{i}\right)>0$, then $\Phi\left(D_{i}\right)=\Phi\left(D_{i-1}\right)-t_{i}+1$
- In both cases, we have $\Phi\left(\mathrm{D}_{\mathrm{i}}\right) \leq \Phi\left(\mathrm{D}_{\mathrm{i}-1}\right)-\mathrm{t}_{\mathrm{i}}+1$
- Thus, $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+\Phi\left(\mathrm{D}_{\mathrm{i}}\right)-\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right) \leq\left(\mathrm{t}_{\mathrm{i}}+1\right)+\left(\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right)-\mathrm{t}_{\mathrm{i}}+1\right)-\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right)=2$
- Thus, $2 * n \geq \Sigma d_{i} \geq \Sigma c_{i}$ and $Q$ is in $O(n)$
- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis


## Dynamic Tables

- We now use amortized analysis for something more useful: Complexity of operations on a dynamic table
- Assume an array T and a sequence Q of insert/delete ops
- Dynamic Tables: Keep the array small, yet avoid overflows
- Start with a table T of size 1
- When inserting but $T$ is full, we double $|T|$; upon deleting and $A$ is only half-full, we reduce |T| by $50 \%$
- "Doubling", "reducing" means: Copying data to a new location
- If the i'th operation is a insertion (or deletion), it costs either 1 or i (depending on whether or not the array is full)
- Conventional WC analysis
- As i can be up to $n$ for $|Q|=n$, the complexity of insertion is $O(n)$
- Complexity of any Q is $\mathrm{O}\left(\mathrm{n}^{2}\right)$


## Example



## With Potential Method

```
1: }\Phi(\mp@subsup{D}{i}{})\mathrm{ depends on a property of }\mp@subsup{D}{i}{
2: }\Phi(\mp@subsup{D}{n}{})\geq\Phi(\mp@subsup{D}{0}{}
3: di}=\mp@subsup{c}{i}{}+\Phi(\mp@subsup{D}{i}{})-\Phi(\mp@subsup{D}{i-1}{}
```

- Let num(T) be the current number of elements in $T$
- We use potential $\Phi(T)=2 * n u m(T)-|T|$
- Intuitively a "potential"
- Immediately before an expansion, num $(T)=|T|$ and $\Phi(T)=|T|$, so there is much potential in $T$ (we saved for the expansion to come)
- Immediately after an expansion, num( T$)=|\mathrm{T}| / 2$ and $\Phi(\mathrm{T})=0$; all potential has been used, we need to save again for the next expansion
- Formally
- 1: Of course
- 2: As $T$ is always at least half-full, $\Phi(T)$ is always $\geq 0$ We start with $|T|=0$, and thus $\Phi\left(T_{n}\right)-\Phi\left(T_{0}\right) \geq 0$


## Continuation

```
1: }\Phi(\mp@subsup{D}{i}{})\mathrm{ depends on a property of }\mp@subsup{D}{i}{
2: }\Phi(\mp@subsup{D}{n}{})\geq\Phi(\mp@subsup{D}{0}{}
3: di = cit +\Phi(Di) - Ф(D}\mp@subsup{D}{i-1}{}
```

- 3: Let's study $d_{i}=c_{i}+\Phi\left(T_{i}\right)-\Phi\left(T_{i-1}\right)$ for insertions
- Without expansion

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}} & =1+\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left|T_{i}\right|\right)-\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}-1}\right|\right) \\
& =1+2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}}\right|+\left|\mathrm{T}_{\mathrm{i}-1}\right| \\
& =1+2+0 \\
& =3
\end{aligned}
$$

- With expansion

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}} \quad=\operatorname{num}\left(\mathrm{T}_{\mathrm{i}}\right)+\left(2^{*} \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left|\mathrm{T}_{\mathrm{i}}\right|\right)-\left(2^{*} \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}-1}\right|\right) \\
& =\operatorname{num}\left(T_{i}\right)+2 * \operatorname{num}\left(T_{i}\right)-\quad\left|T_{i}\right| \quad-2 * \operatorname{num}\left(T_{i}-1\right)+\left|T_{i}-1\right| \\
& =\operatorname{num}\left(T_{i}\right)+2 * \operatorname{num}\left(T_{i}\right)-2 *\left(\operatorname{num}\left(T_{i}\right)-1\right)-2^{*}\left(\operatorname{num}\left(T_{i}\right)-1\right)+\operatorname{num}\left(T_{i}\right)-1 \\
& =3 * \operatorname{num}\left(T_{i}\right)-2 * \operatorname{num}\left(T_{i}\right)+2-2 * \operatorname{num}\left(T_{i}\right)+2+\operatorname{num}\left(T_{i}\right)-1 \\
& \text { = } 3
\end{aligned}
$$

- Thus, $3^{*} \mathrm{n} \geq \Sigma \mathrm{d}_{\mathrm{i}} \geq \Sigma \mathrm{c}_{\mathrm{i}}$ and Q is in $\mathrm{O}(\mathrm{n})$ (for only insertions)


## Intuition

- Consider accounting method
- For insert', we deposit 3 because
- 1 for the insertion (the real cost)
- 1 for the time that we need to copy this new element at the next expansion
- These 1's fill the account with $\left|T_{i}\right| / 2$ before the next expansion
- 1 for one of the $\left|T_{i}\right| / 2$ elements already in A after the last expansion
- These fill the account with $\left|T_{i}\right| / 2$ before the next expansion
- Thus, we have enough credit at the next expansion


| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Problem: Deletions

- Our strategy for deletions so far is not very clever
- Assume a table with num( $T$ )=|T|
- Assume a sequence $Q=\{I, D, I, D, I, D, I \ldots\}$
- This sequence will perform $|T|+|T| / 2+|T|+|T| / 2+\ldots$ real ops
- As $|T|$ is $O(n), Q$ is in $O\left(n^{2}\right)$ and not in $O(n)$
- Simple trick: Wait until num $(T)=|T| / 4$, then reduce $T$ by 50\%
- Leads to amortized cost of $O(n)$ for any sequence of operations
- We omit the proof (see [Cor03])
- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof


## Re-Organization Strategies

- Think of self-organizing lists again
- When searching an element, we change the list $L$
- As usual: Accessing the i'th element costs i
- Three popular strategies
- MF, move-to-front:

After searching an element e , move e to the front of L

- T, transpose:

After searching an element e, swap e with its predecessor in L

- FC, frequency count:

Keep an access frequency counter for every element in $L$ and keep
$L$ sorted by this counter. After searching e, increase counter of e and move "up" to keep sorted'ness

## Notation

- Assume we have an arbitrary strategy $A$ and a sequence $S$ of accesses on list L
- After accessing element $i$, A may move $i$ as follows
- Consecutive swaps of i with (adjacent) predecessor (toward front) or successor (toward back)
- Only swap $i$ (multiple times), do not swap ( $\mathrm{j}, \mathrm{k}$ ) with $\mathrm{j} \neq \mathrm{i}$ and $\mathrm{k} \neq \mathrm{i}$
- When using strategy $A$, let $F_{A}(l)$ be the number of front-swaps of $i$ and $X_{A}(I)$ the number of back-swaps of $i$ in step I
- This means: $\mathrm{F}_{\mathrm{MF}} / X_{\text {MF }}$ for strategy MF, $\mathrm{F}_{\mathrm{T}} / X_{T} \ldots \mathrm{~F}_{\mathrm{FC}} / X_{\mathrm{FC}}$
- Of course, $\forall I: X_{M F}(I)=X_{T}(I)=X_{F C}(I)=0$
- Let $C_{A}(S)$ be the total access cost of $A$ incurred by $S$
- Again: $\mathrm{C}_{\mathrm{MF}}$ for strategy MF, $\mathrm{C}_{\mathrm{T}}$ for $\mathrm{T}, \mathrm{C}_{\mathrm{FC}}$ for FC
- Conventional WC analysis gives $\forall A: C_{A}(S)$ is in $O\left(|S|^{*}|L|\right)$


## Theorem

- Theorem (Amortized costs)

Let $A$ be any self-organizing strategy for a SOL L, MF be the move-to-front strategy, and $S$ be a sequence of accesses to L . Then

$$
C_{\mathrm{MF}}(S) \leq 2 * C_{\mathrm{A}}(S)+X_{\mathrm{A}}(S)-F_{\mathrm{A}}(S)-|S|
$$

- What does this mean?
- We don't learn more about the absolute complexity of A / MF
- But we learn that MF is quite good
- Any strategy following the same constraints (only series of swaps) will at best be roughly twice as good as MF
- Usally $X_{A}(S)=0$
- Despite its simplicity, MF is a fairly safe bet in whatever circumstances (= sequences)


## Idea of the Proof

- We will compare access costs in L using MF and any A
- Think of both strategies running S on two copies of the same initial list L
- After each step, A and MF perform different swaps, so all list states except the first very likely are different
- We will compare list states by looking at the number of inversions ("Fehlstellungen")
- Actually, we shall only analyze how the number of invs changes
- We will show that the number of inversions defines a potential of a pair of lists that helps to derive an upper bound on the differences in real costs


## Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof


## Inversions

- Let L and $\mathrm{L}^{\prime}$ be permutations of the set $\{1,2, \ldots, \mathrm{n}\}$
- Definition
- An unordered pair \{i,j\} is called an inversion of $L$ and $L$ ' iff $i$ and $j$ are in different order in $L$ than in $L '($ for $1 \leq i<j \leq n)$
- The number of inversions between $L$ and $L^{\prime}$ is written $\operatorname{inv}\left(L, L^{\prime}\right)$
- Remarks
- Different order: Once i before j, once i after j
- Obviously, inv(L, L') $=\operatorname{inv}\left(L^{\prime}, L\right)$
- Examples: $\operatorname{inv}((1,2,3),(2,3,1))=|\{\{1,2\},\{1,3\}\}|=2$
$-\operatorname{inv}((1, \ldots, n),(n, \ldots, 1))=n(n-1) / 2$
- Without loss of generality, we assume that $L=(1, \ldots, n)$
- Because we only look at changes in number of inversions and not at the actual set of inversions


## Sequences of Changes

- Assume we applied $\mathrm{I}-1$ steps creating $\mathrm{L}_{\text {MF }}$ using MF and $\mathrm{L}_{\mathrm{A}}$ using A
- Let us consider the next step I , creating $\mathrm{L}_{\mathrm{MF}}{ }^{\prime}$ and $\mathrm{L}_{\mathrm{A}^{\prime}}$



## Inversion Changes

- How does I change the number of inv's between $L_{M F} / L_{A}$ ?
- Can we compute $\operatorname{inv}\left(\mathrm{L}_{M F}^{\prime}, \mathrm{L}_{A}^{\prime}\right)$ from $\operatorname{inv}\left(\mathrm{L}_{\text {MF }}, \mathrm{L}_{A}\right)$ ?
- Assume step I accesses element i from $L_{A}$
- We may assume it is at position i
- Let this element $i$ be at position $k$ in $L_{\text {MF }}$
- Access in $L_{A}$ costs $i$, access in $L_{\text {MF }}$ costs $k$
- After step I, A performs an unknown number of swaps; MF performs exactly k-1 front-swaps



## Counting Inversion Changes 1

- Let $X_{i}$ be the set of values that are before position k in $\mathrm{L}_{\text {MF }}$ and after position i in $\mathrm{L}_{\mathrm{A}}$

- Le $Y_{i}$ be the values before position $k$ in $L_{M F}$ and before $i$ in $L_{A}$
- Clearly, $\left|X_{l}\right|+\left|Y_{I}\right|=k-1$
- All pairs $\{i, c\}$ with $c \in X_{i}$ are inversions between $L_{A}$ and $L_{M F}$
- There may be more; but only those with i are affected in this step
- After step I, MF moves element i to the front
- Assume first that A does simply nothing
- All inversions $\{i, c\}$ with $c \in X_{i}$ disappear (there are $\left|X_{l}\right|$ many)
- But $\left|Y_{\mid}\right|=k-1-\left|X_{l}\right|$ new inversions appear
- Thus: $\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)=\operatorname{inv}\left(L_{M F I} L_{A}\right)-\left|X_{I}\right|+k-1-\left|X_{I}\right|$
- But A does something



## Counting Inversion Changes 2

- In step I, let A perform $F_{A}(I)$ front-swaps and $\mathrm{X}_{\mathrm{A}}(\mathrm{I})$
 back-swaps
- Every front-swap (swapping i before any $j$ ) in $L_{A}$ decreases $\operatorname{inv}\left(\mathrm{L}_{\mathrm{MF}}{ }^{\prime}, \mathrm{L}_{\mathrm{A}}{ }^{\prime}\right)$ by 1
- Before step $\mathrm{I}, \mathrm{j}$ must be before i in $\mathrm{L}_{\mathrm{A}}$ (it is a front-swap) but after i in $L_{M F}{ }^{\prime}$ (because i now is the first element in $L_{M F}{ }^{\prime}$ )
- After step $\mathrm{I}, \mathrm{i}$ is before j in both $\mathrm{L}_{\mathrm{A}}{ }^{\prime}$ and $\mathrm{L}_{\mathrm{MF}}{ }^{\prime}$
- Equally, every back-swap increases inv( $\left.\mathrm{L}_{\mathrm{MF}}{ }^{\prime}, \mathrm{L}_{\mathrm{A}}{ }^{\prime}\right)$ by 1
- Together: After step I, we have



## Amortized Costs

- Let $c_{1}$ be the real costs of strategy MF for step I
- We use the number of inversions as potential function $\Phi\left(L_{A^{\prime}} L_{M F}\right)=\operatorname{inv}\left(L_{A^{\prime}}^{\prime}, L_{M F}^{\prime}\right)$ on the pair $L_{A^{\prime}} L_{M F}$
- Definition
- The amortized costs of step I, called $d_{\nu}$ are

$$
d_{l}=c_{l}+\operatorname{inv}\left(L_{A}^{\prime}, L_{M F}^{\prime}\right)-\operatorname{inv}\left(L_{A}^{l-1}, L_{M F}^{l-1}\right)
$$

- Accordingly, the amortized costs of sequence $S, \mid S /=m$, are

$$
\Sigma d_{l}=\Sigma c_{l}+\operatorname{inv}\left(L_{A}^{m}, L_{M F}^{m}\right)-i n v\left(L_{A}{ }^{0}, L_{M F}{ }^{0}\right)
$$

- This is a proper potential function
- 1: $\Phi$ depends on a property of the pair $L_{A}, L_{M F}$
- 2: inv() can never be negative, so $\Phi\left(\mathrm{L}_{A^{n}}, \mathrm{~L}_{M F}{ }^{n}\right) \geq \Phi(\mathrm{L}, \mathrm{L})=0$
- Let's look at how operations change the potential


## Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof (after much preparatory work)


## Putting it Together

- We know for every step I from $S$ accessing i: $\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)=\operatorname{inv}\left(L_{M F I} L_{A}\right)-\left|X_{I}\right|+k-1-\left|X_{I}\right|-F_{A}(I)+X_{A}(I)$ and thus

$$
\operatorname{inv}\left(L_{M F}^{\prime}, L_{A}{ }^{\prime}\right)-\operatorname{inv}\left(L_{M F}, L_{A}\right)=-\left|X_{I}\right|+k-1-\left|X_{I}\right|-F_{A}(I)+X_{A}(I)
$$

- Using the fact that $c_{1}=k$ for MF, we get amortized costs of

$$
\begin{aligned}
d_{1} & =c_{1}+\operatorname{inv}\left(L_{A^{\prime}}, L_{M F}^{\prime}\right)-\operatorname{inv}\left(L_{A^{\prime}} L_{M F}\right) \\
& =k-\left|X_{1}\right|+k-1-\left|X_{\mid}\right|-F_{A}(I)+X_{A}(I) \\
& =2\left(k-\left|X_{\mid}\right|\right)-1-F_{A}(I)+X_{A}(I)
\end{aligned}
$$

- Recall that $\left|Y_{l}\right|=k-1-\left|X_{l}\right|$ are those elements before $i$ in both lists. This implies that $\mathrm{k}-1-\left|\mathrm{X}_{\mid}\right| \leq \mathrm{i}-1$ or $\mathrm{k}-\left|\mathrm{X}_{\mathrm{l}}\right| \leq \mathrm{i}$
- There can be at most $i-1$ elements before position $i$ in $L_{A}$
- Therefore: $\mathrm{d}_{\mathrm{I}} \leq 2 \mathrm{i}-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$


## Putting it Together

- This is the central trick!
- Because we only looked at inversions (and hence the sequence of values), we han draw a connection between the value that is accessed and the number of inversions that are affected
- Recall that $\left|Y_{l}\right|=k-1-\left|X_{l}\right|$ are those elements before $i$ in both lists. This implies that $k-1-\left|X_{l}\right| \leq i-1$ or $k-\left|X_{l}\right| \leq i$
- There can be at most $i-1$ elements before position in $L_{A}$
- Therefore: $\mathrm{d}_{\mathrm{I}} \leq 2 \mathrm{i}-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$


## Aggregating

- We also know the cost of accessing $i$ using $A$ : that's $i$
- Together: $\mathrm{d}_{\mathrm{I}} \leq 2 \mathrm{C}_{\mathrm{A}}(\mathrm{I})-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$
- Aggregating this inequality over all $a_{1}$ (hence $S$ ), we get

$$
\Sigma d_{1} \leq 2 * C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

- By definition, we also have

$$
\Sigma d_{1}=\Sigma c_{1}+\operatorname{inv}\left(L_{A}{ }^{m}, L_{M F}{ }^{m}\right)-\operatorname{inv}\left(L_{A}{ }^{0}, L_{M F}{ }^{0}\right)
$$

- Since $\sum c_{1}=C_{M F}(S)$ and $\operatorname{inv}\left(L_{A}{ }^{0}, L_{M F}{ }^{0}\right)=0$, we get

$$
C_{M F}(S)+\operatorname{inv}\left(L_{A} m, L_{M F}^{m}\right) \leq 2^{*} C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

- It finally follows (inv() $\geq 0$ )

$$
C_{M F}(S) \leq 2 * C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

## Summary

- Self-organization creates a type of problem we were not confronted with before
- Things change during program execution
- But not at random - we follow a strategy
- Analysis is none-trivial, but
- Helped to find a elegant and surprising conjecture
- Very interesting in itself: We showed relationships between measures we never counted (and could not count easily)
- But beware the assumptions (e.g., only single swaps)
- Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized efficiency of list update and paging rules." Communications of the ACM 28(2): 202-208.

