

Algorithms and Data Structures

Amortized Analysis

Marius Kloft

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
- This lecture is not covered in [OW93] but in [Cor03]

- SOL setting: Dependent operations
 - We have a sequence Q of operations on a data structure
 - Searching SOL and rearranging a SOL
 - Operations are not independent by changing the data structure, costs of subsequent operations are influenced
- Conventional WC-analysis produces misleading results
 - Assumes all operations to be independent
 - Changing search order in a workload does not influence WC
- Amortized analysis analyzes the complexity of any sequence of operations of length n
 - Or the worst average cost of each operation in any sequence

- Assume a stack S with a special op: mpop(k)
- mpop(k) pops min(k, |S|) elements from S
- Assume any sequence Q of operations
 - E.g. Q={push,push,mpop(k),push,push,push,mpop(k),...}
- Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k
 mpop simply calls pop k times
- With |Q|=n: What cost do we expect for Q?
 - Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
 - In the worst case, k can be \sim n (n times push, then one mpop(n))
 - Worst case of a single operation is O(n)
 - Total worst-case cost: O(n²)

Note: Costs only ~2*n

- Clearly, the cost of Q is in O(n²), but this is not tight
- A simple thought shows: The cost of Q is in O(n)
 - Every element can be popped only once (no matter if this happens through a pop or a mpop)
 - Pushing an element costs 1, popping it costs 1
 - Within Q, we can at most push O(n) elements and, hence, also only pop O(n) elements
 - Thus, the total cost is in O(n)
- We want to derive such a result in a more systematic manner (analyzing SOLs is not that easy)

- We want to generate all bitstrings produced by iteratively adding 1 n-times, starting from 0
- Q is a sequence of "+1"
- We count as cost of an operation the number of bits we have to flip
- Classical WC analysis
 - Assume bitstrings of length k
 - Roll-over counter if we exceed 2^{k-1}
 - A single operation can flip up to k bits
 - "1111111" +1
 - Worst case cost for Q: O(k*n)

	_	
0000000		
0000001	1	1
0000010	2	3
0000011	1	4
00000100	3	7
00000101	1	8
00000110	2	10
00000111	1	11
00001000	4	15
00001001	1	16
00001010	2	18

- Again, this complexity is overly pessimistic / not tight
- Cost actually is in O(n)
 - The right-most bit is flipped in every operation: cost=n
 - The second-rightmost bit is flipped every second time: n/2
 - The third ...: n/4
 - ...
 - Together

$$\sum_{i=0}^{k-1} \frac{n}{2^i} < n * \sum_{i=0}^{\infty} \frac{1}{2^i} = 2 * n$$

- Two Examples
- Two Analysis Methods
 - Accounting Method
 - Potential Method
- Dynamic Tables
- SOL Analysis

- Idea: We create an account for Q
- Operations put / withdraw a constant amount of "money"
- We choose these amounts such that the current state of the account is always (throughout Q) an upper bound of the actual cost of Q
 - Let c_i be the true cost of operation i, d_i its effect on the account
 - We require

$$\forall 1 \le k \le n : \sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} d_i$$

- Especially, the account must never become negative (or the inequality at this point is broken)
- It follows: An upper bound for the account (d) is also an upper bound for the true cost (c)

Application to mpop

- Assume d_{push}=2, d_{pop}=0, d_{mpop}=0
- Clearly, the account can never become zero
- Summing these up yields an upper bound on the real cost
 - Clearly, d_{push} is an upper bound on c_{push} (which is 1)
 - Idea: Whenever we push an element, we pay 1 for the push and 1 for the operation that will (at same later time) pop exactly this element
 - It doesn't matter whether this will be through a pop or a mpop
 - Thus, when it comes to a pop or mpop, there is always enough money on the account (deposited by previous push's)
- This proves:

$$\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} d_{i} \leq 2 * n \in O(n)$$

- Assume $d_{push}=1$, $d_{pop}=1$, $d_{mpop}=1$
 - Assume Q={push,push,push,mpop(3)}
 - $-\Sigma c=6 > \Sigma d = 4$
- Assume $d_{push}=1$, $d_{pop}=0$, $d_{mpop}=0$
 - Assume Q={push,push,mpop(2)}
 - $-\Sigma c=4 > \Sigma d=2$
- Assume d_{push}=3, d_{pop}=0, d_{mpop}=0
 Fine as well, but not as tight (but also leads to O(n))

Application to Bit-Counter

- Look at the sequence Q' of flips generated by a sequence Q
 - For every +1, we flip exactly once from 0 to 1 and perform a sequence of flips from 1 to 0
 - There is no "flip to 1" if we roll-over

00000000		
0000001	1	1
00000010	2	3
00000011	1	4
00000100	3	7
00000101	1	8
00000110	2	10
00000111	1	11
00001000	4	15
00001001	1	16
00001010	2	18

Application to Bit-Counter (Continued)

- Assume $d_{flip-to-1}=2$ and $d_{flip-to-0}=0$
 - Clearly, $d_{flip-to-1}$ is an upper bound to $c_{flip-to-1}$
 - Idea: When we flip-to-1, we pay 1 for flipping and 1 for the back-flip-to-0 that might happen at some later time in Q'
 - As we start with only 0 and can backflip any 1 only once, there is always enough money on the account for the flip-to-0's
 - Thus, the account is an upper bound on the actual cost
- As every operation in Q can pay at most 2 (there is at most 1 flip-to-1), Q is in O(n)

0000000		
0000001	1	1
0000010	2	3
00000011	1	4
00000100	3	7
00000101	1	8
00000110	2	10
00000111	1	11
00001000	4	15
00001001	1	16
00001010	2	18

- Two Examples
- Two Analysis Methods
 - Accounting Method
 - Potential Method
- Dynamic Tables
- SOL Analysis

- In the accounting method, we assign a cost to every operation and compare aggregated accounting costs of ops with aggregated real costs of ops
- In the potential method, we assign a potential Φ(D) to the data structure D manipulated by Q
- As ops from Q change D, they also change D's potential
- The trick is to design Φ such that we can (again) use it to derive an upper bound on the real cost of Q

Potential Function

- Let D_0 , D_1 , ... D_n be the states of D when applying Q
- We define the amortized cost d_i of the i'th operation as $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
- We then can derive the amortized cost of Q as

$$\sum_{i=1}^{n} d_{i} = \sum_{i=1}^{n} (c_{i} + \phi(D_{i}) - \phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \phi(D_{n}) - \phi(D_{0})$$

 Rough idea: If we find a Φ such that (a) we obtain formulas for the amortized costs for all individual d_i and (b) Φ(D_n)≥Φ(D₀), we have an upper bound for the real costs

- Operations raise or lower the potential (~future cost) of D
- We need to find a function Φ such that
 - 1: $\Phi(D_i)$ depends on a property of D_i
 - − 2: $Φ(D_n) ≥ Φ(D_0)$ [and we will always have $Φ(D_0)=0$]
 - 3: We can compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ for any possible op
- As within a sequence we do not know its future, we also have to require that Φ(D_i) never is negative
 - Otherwise, the amortized cost of the sequence Q[1-i] is no upper bound in the real costs
- Idea: Always pay in advance

- We use the number of objects on the stack as its potential
- Then
 - 1: $\Phi(D_i)$ depends on a property of D_i
 - − 2: $Φ(D_n) ≥ Φ(D_0)$ and $Φ(D_0)=0$
 - 3: Compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - If op is push: $d_i = c_i + 1 = 2$
 - If op is pop: $d_i = c_i 1 = 0$
 - If op is mpop(k): $d_i = c_i #elements_taken_from_stack = 0$

e.g., both equaling k if at least k elements are on stack

• Thus, $2^*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n)

Example: Bit-Counter

- We use the number of `1's in the bitstring as its potential
- Then
 - 1: $\Phi(D_i)$ depends on a property of D_i
 - − 2: $Φ(D_n) ≥ Φ(D_0)$ and $Φ(D_0) = 0$
 - 3: Compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - Let the i'th operation incur one flip to 1 (or no flip to 1 if roll-over) and $t_{\rm i}$ flips to 0
 - Thus, $c_i \le t_i + 1$
 - If $\Phi(D_i)=0$, the this op has flipped all positions to 0, and previously they were all 1 and we had $\Phi(D_{i-1})=k$
 - If $\Phi(D_i) > 0$, then $\Phi(D_i) = \Phi(D_{i-1}) t_i + 1$
 - In both cases, we have $\Phi(D_i) \leq \Phi(D_{i-1})-t_i+1$
 - Thus, $d_i = c_i + \Phi(D_i) \Phi(D_{i-1}) \le (t_i+1) + (\Phi(D_{i-1})-t_i+1) \Phi(D_{i-1}) = 2$
- Thus, $2^*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n)

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis

- We now use amortized analysis for something more useful: Complexity of operations on a dynamic table
- Assume an array T and a sequence Q of insert/delete ops
- Dynamic Tables: Keep the array small, yet avoid overflows
 - Start with a table T of size 1
 - When inserting but T is full, we double |T|; upon deleting and A is only half-full, we reduce |T| by 50%
 - "Doubling", "reducing" means: Copying data to a new location
 - If the i'th operation is a insertion (or deletion), it costs either 1 or i (depending on whether or not the array is full)
- Conventional WC analysis
 - As i can be up to n for |Q|=n, the complexity of insertion is O(n)
 - Complexity of any Q is O(n²)

Example

1: $\Phi(D_i)$ depends on a property of D_i 2: $\Phi(D_n) \ge \Phi(D_0)$ 3: $d_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

- Let num(T) be the current number of elements in T
- We use potential $\Phi(T) = 2*num(T) |T|$
 - Intuitively a "potential"
 - Immediately before an expansion, num(T)=|T| and Φ(T)=|T|, so there is much potential in T (we saved for the expansion to come)
 - Immediately after an expansion, num(T)=|T|/2 and Φ(T)=0; all potential has been used, we need to save again for the next expansion
 - Formally
 - 1: Of course
 - 2: As T is always at least half-full, $\Phi(T)$ is always ≥ 0 We start with |T|=0, and thus $\Phi(T_n)-\Phi(T_0)\ge 0$

Continuation

1: $\Phi(D_i)$ depends on a property of D_i 2: $\Phi(D_n) \ge \Phi(D_0)$ 3: $d_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

- 3: Let's study $d_i = c_i + \Phi(T_i) \Phi(T_{i-1})$ for insertions
- Without expansion

$$\begin{aligned} d_{i} &= 1 + (2*num(T_{i})-|T_{i}|) - (2*num(T_{i-1})-|T_{i-1}|) \\ &= 1 + 2*num(T_{i})-2*num(T_{i-1}) - |T_{i}| + |T_{i-1}| \\ &= 1 + 2 + 0 \\ &= 3 \end{aligned}$$

• With expansion

$$\begin{aligned} & = \operatorname{num}(T_i) + (2*\operatorname{num}(T_i) - |T_i|) - (2*\operatorname{num}(T_{i-1}) - |T_{i-1}|) \\ & = \operatorname{num}(T_i) + 2*\operatorname{num}(T_i) - |T_i| - 2*\operatorname{num}(T_i - 1) + |T_i - 1| \\ & = \operatorname{num}(T_i) + 2*\operatorname{num}(T_i) - 2*(\operatorname{num}(T_i) - 1) - 2*(\operatorname{num}(T_i) - 1) + \operatorname{num}(T_i) - 1 \\ & = 3*\operatorname{num}(T_i) - 2*\operatorname{num}(T_i) + 2 - 2*\operatorname{num}(T_i) + 2 + \operatorname{num}(T_i) - 1 \\ & = 3 \end{aligned}$$

• Thus, $3^*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n) (for only insertions)

Intuition

- Consider accounting method
- For insert', we deposit 3 because
 - 1 for the insertion (the real cost)
 - 1 for the time that we need to copy this new element at the next expansion
 - These 1's fill the account with $|T_i|/2$ before the next expansion
 - 1 for one of the $|T_i|/2$ elements already in A after the last expansion
 - These fill the account with $|T_i|/2$ before the next expansion
- Thus, we have enough credit at the next expansion

1	2	3	4	5	6	7	8	9	0	1	2	3		
---	---	---	---	---	---	---	---	---	---	---	---	---	--	--

- Our strategy for deletions so far is not very clever
 - Assume a table with num(T)=|T|
 - Assume a sequence $Q = \{I, D, I, D, I, D, I \dots\}$
 - This sequence will perform $|T| + |T|/2 + |T| + |T|/2 + \dots$ real ops
 - As |T| is O(n), Q is in O(n²) and not in O(n)
- Simple trick: Wait until num(T)=|T|/4, then reduce T by 50%
 - Leads to amortized cost of O(n) for any sequence of operations
 - We omit the proof (see [Cor03])

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof

Re-Organization Strategies

- Think of self-organizing lists again
- When searching an element, we change the list L
 - As usual: Accessing the i'th element costs i
- Three popular strategies
 - MF, move-to-front:
 After searching an element e, move e to the front of L
 - T, transpose:
 After searching an element e, swap e with its predecessor in L
 - FC, frequency count:

Keep an access frequency counter for every element in L and keep L sorted by this counter. After searching e, increase counter of e and move "up" to keep sorted'ness

Notation

- Assume we have an arbitrary strategy A and a sequence S of accesses on list L
- After accessing element i, A may move i as follows
 - Consecutive swaps of i with (adjacent) predecessor (toward front) or successor (toward back)
 - Only swap i (multiple times), do not swap (j,k) with $j \neq i$ and $k \neq i$
 - When using strategy A, let $F_A(I)$ be the number of front-swaps of i and $X_A(I)$ the number of back-swaps of i in step I
 - This means: F_{MF}/X_{MF} for strategy MF, $F_T/X_T \dots F_{FC}/X_{FC}$
 - Of course, $\forall I: X_{MF}(I) = X_T(I) = X_{FC}(I) = 0$
- Let C_A(S) be the total access cost of A incurred by S
 - Again: C_{MF} for strategy MF, C_T for T, C_{FC} for FC
- Conventional WC analysis gives $\forall A: C_A(S)$ is in $O(|S|^*|L|)$

Theorem

• Theorem (Amortized costs)

Let A be any self-organizing strategy for a SOL L, MF be the move-to-front strategy, and S be a sequence of accesses to L. Then

 $C_{MF}(S) \le 2^*C_A(S) + X_A(S) - F_A(S) - |S|$

- What does this mean?
 - We don't learn more about the absolute complexity of A / MF
 - But we learn that MF is quite good
 - Any strategy following the same constraints (only series of swaps) will at best be roughly twice as good as MF
 - Usally $X_A(S)=0$
 - Despite its simplicity, MF is a fairly safe bet in whatever circumstances (= sequences)

- We will compare access costs in L using MF and any A
- Think of both strategies running S on two copies of the same initial list L
- After each step, A and MF perform different swaps, so all list states except the first very likely are different
- We will compare list states by looking at the number of inversions ("Fehlstellungen")

- Actually, we shall only analyze how the number of invs changes

• We will show that the number of inversions defines a potential of a pair of lists that helps to derive an upper bound on the differences in real costs

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof

Inversions

- Let L and L' be permutations of the set {1, 2, ..., n}
- Definition
 - An unordered pair $\{i, j\}$ is called an inversion of L and L' iff i and j are in different order in L than in L' (for $1 \le i < j \le n$)
 - The number of inversions between L and L' is written inv(L, L')
- Remarks
 - Different order: Once i before j, once i after j
 - Obviously, inv(L, L') = inv(L', L)
- Examples: inv((1,2,3), (2,3,1)) = $|\{ \{1,2\}, \{1,3\} \}| = 2$ - inv((1,...,n), (n,...,1)) = n(n-1)/2
- Without loss of generality, we assume that L=(1,...,n)
 - Because we only look at changes in number of inversions and not at the actual set of inversions

Sequences of Changes

- Assume we applied I-1 steps creating $L_{\rm MF}$ using MF and $L_{\rm A}$ using A
- Let us consider the next step I, creating L_{MF} and L_{A}

Inversion Changes

- How does I change the number of inv's between L_{MF} / L_A?
- Can we compute inv(L_{MF}', L_A') from inv(L_{MF}, L_A)?
 - Assume step I accesses element i from L_A
 - We may assume it is at position i
 - Let this element i be at position k in L_{MF}
 - Access in L_A costs i, access in L_{MF} costs k
 - After step I, A performs an unknown number of swaps; MF performs exactly k-1 front-swaps

Counting Inversion Changes 1

 Let X_i be the set of values that are before position k in L_{MF} and after position i in L_A

- Le Y_i be the values before position k in L_{MF} and before i in L_A Clearly, $|X_i|$ + $|Y_i|$ = k-1
- All pairs {i,c} with c∈X_i are inversions between L_A and L_{MF}
 There may be more; but only those with i are affected in this step
- After step I, MF moves element i to the front
 - Assume first that A does simply nothing
 - All inversions {i,c} with $c \in X_i$ disappear (there are $|X_i|$ many)

LMF

- But $|Y_1| = k-1-|X_1|$ new inversions appear
- Thus: $inv(L_{MF}',L_{A}') = inv(L_{MF},L_{A}) |X_{I}| + k-1-|X_{I}|$
- But A does something

Counting Inversion Changes 2

 In step I, let A perform F_A(I) front-swaps and X_A(I) back-swaps

- Every front-swap (swapping i before any j) in L_A decreases inv($L_{\rm MF}{'},L_A{'}$) by 1
 - Before step I, j must be before i in L_A (it is a front-swap) but after i in L_{MF}' (because i now is the first element in L_{MF}')
 - After step I, i is before j in both L_{A}^{\prime} and L_{MF}^{\prime}
- Equally, every back-swap increases $inv(L_{MF}',L_{A}')$ by 1
- Together: After step I, we have

 $inv(L_{MF}', L_{A}') = inv(L_{MF}, L_{A}) - |X_{I}| + k-1 - |X_{I}| - F_{A}(I) + X_{A}(I)$ Before step I through MF through A

Was c_1 ... was d_1 ... we switch to OW notation

- Let c_l be the real costs of strategy MF for step I
- We use the number of inversions as potential function $\Phi(L_A, L_{MF}) = inv(L_A^{I}, L_{MF}^{I})$ on the pair L_A , L_{MF}
- Definition
 - The amortized costs of step I, called d_{ν} are

$$d_{l} = c_{l} + inv(L_{A'}, L_{MF}) - inv(L_{A'}, L_{MF})$$

- Accordingly, the amortized costs of sequence S, |S|=m, are

 $\sum d_{I} = \sum c_{I} + inv(L_{A}^{m}, L_{MF}^{m}) - inv(L_{A}^{0}, L_{MF}^{0})$

- This is a proper potential function
 - 1: Φ depends on a property of the pair L_A, L_{MF}
 - 2: inv() can never be negative, so $\Phi(L_A^n, L_{MF}^n) \ge \Phi(L, L) = 0$
- Let's look at how operations change the potential

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof (after much preparatory work)

Putting it Together

- We know for every step I from S accessing i: $inv(L_{MF}',L_{A}') = inv(L_{MF},L_{A}) - |X_{I}| + k-1-|X_{I}| - F_{A}(I) + X_{A}(I)$ and thus $inv(L_{MF}',L_{A}') - inv(L_{MF},L_{A}) = -|X_{I}| + k-1-|X_{I}| - F_{A}(I) + X_{A}(I)$
- Using the fact that c_l=k for MF, we get amortized costs of

$$\begin{aligned} d_{I} &= c_{I} + inv(L_{A}', L_{MF}') - inv(L_{A}, L_{MF}) \\ &= k - |X_{I}| + k - 1 - |X_{I}| - F_{A}(I) + X_{A}(I) \\ &= 2(k - |X_{I}|) - 1 - F_{A}(I) + X_{A}(I) \end{aligned}$$

Recall that |Y₁|=k-1-|X₁| are those elements before i in both lists. This implies that k-1-|X₁| ≤ i-1 or k-|X₁|≤i

– There can be at most i-1 elements before position i in L_A

• Therefore: $d_{I} \leq 2i - 1 - F_{A}(I) + X_{A}(I)$

Putting it Together

- This is the central trick!
- Because we only looked at inversions (and hence the sequence of values), we can draw a connection between the value that is accessed and the number of inversions that are affected

• Recall that $|Y_i| = k-1-|X_i|$ are those elements before i in both lists. This implies that $k-1-|X_i| \le i-1$ or $k-|X_i| \le i$

– There can be at most i-1 elements before position i in L_A

• Therefore: $d_{I} \leq 2i - 1 - F_{A}(I) + X_{A}(I)$

Aggregating

- We also know the cost of accessing i using A: that's i
- Together: $d_{I} \leq 2C_{A}(I) 1 F_{A}(I) + X_{A}(I)$
- Aggregating this inequality over all a_I (hence S), we get $\sum d_I \le 2*C_A(S) - |S| - F_A(S) + X_A(S)$
- By definition, we also have

 $\Sigma d_{I} = \Sigma c_{I} + inv(L_{A}^{m}, L_{MF}^{m}) - inv(L_{A}^{0}, L_{MF}^{0})$

- Since $\Sigma c_I = C_{MF}(S)$ and $inv(L_A^0, L_{MF}^0)=0$, we get $C_{MF}(S) + inv(L_A^m, L_{MF}^m) \le 2*C_A(S) - |S| - F_A(S) + X_A(S)$
- It finally follows (inv()≥0)

 $C_{MF}(S) \leq 2*C_A(S) - |S| - F_A(S) + X_A(S)$

Summary

- Self-organization creates a type of problem we were not confronted with before
 - Things change during program execution
 - But not at random we follow a strategy
- Analysis is none-trivial, but
 - Helped to find a elegant and surprising conjecture
 - Very interesting in itself: We showed relationships between measures we never counted (and could not count easily)
 - But beware the assumptions (e.g., only single swaps)
 - Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized efficiency of list update and paging rules." *Communications of the ACM 28(2): 202-208.*