
Algorithms and Data Structures

Marius Kloft

Amortized Analysis

Marius Kloft: Alg&DS, Summer Semester 2016 2

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL - Analysis

• This lecture is not covered in [OW93] but in [Cor03]

Marius Kloft: Alg&DS, Summer Semester 2016 3

Setting

• SOL setting: Dependent operations
– We have a sequence Q of operations on a data structure

• Searching SOL and rearranging a SOL
– Operations are not independent – by changing the data structure,

costs of subsequent operations are influenced
• Conventional WC-analysis produces misleading results

– Assumes all operations to be independent
– Changing search order in a workload does not influence WC

• Amortized analysis analyzes the complexity of any
sequence of operations of length n
– Or the worst average cost of each operation in any sequence

Marius Kloft: Alg&DS, Summer Semester 2016 4

Example 1: Multi-Pop

• Assume a stack S with a special op: mpop(k)
• mpop(k) pops min(k, |S|) elements from S
• Assume any sequence Q of operations

– E.g. Q={push,push,mpop(k),push,push,push,mpop(k),…}
• Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k

– mpop simply calls pop k times
• With |Q|=n: What cost do we expect for Q?

– Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
– In the worst case, k can be ~n (n times push, then one mpop(n))
– Worst case of a single operation is O(n)
– Total worst-case cost: O(n2)

Note: Costs only ~2*n

Marius Kloft: Alg&DS, Summer Semester 2016 5

Problem

• Clearly, the cost of Q is in O(n2), but this is not tight
• A simple thought shows: The cost of Q is in O(n)

– Every element can be popped only once (no matter if this happens
through a pop or a mpop)

– Pushing an element costs 1, popping it costs 1
– Within Q, we can at most push O(n) elements and, hence, also only

pop O(n) elements
– Thus, the total cost is in O(n)

• We want to derive such a result in a more systematic
manner (analyzing SOLs is not that easy)

Marius Kloft: Alg&DS, Summer Semester 2016 6

Example 2: Bit-Counter

• We want to generate all bitstrings produced by iteratively
adding 1 n-times, starting from 0

• Q is a sequence of „+1“
• We count as cost of an operation

the number of bits we have to flip
• Classical WC analysis

– Assume bitstrings of length k
– Roll-over counter if we exceed 2k-1
– A single operation can flip up to k bits

• “1111111” +1
– Worst case cost for Q: O(k*n)

00000000
00000001 1 1
00000010 2 3
00000011 1 4
00000100 3 7
00000101 1 8
00000110 2 10
00000111 1 11
00001000 4 15
00001001 1 16
00001010 2 18
…

Marius Kloft: Alg&DS, Summer Semester 2016 7

Problem

• Again, this complexity is overly pessimistic / not tight
• Cost actually is in O(n)

– The right-most bit is flipped in every operation: cost=n
– The second-rightmost bit is flipped every second time: n/2
– The third …: n/4
– …
– Together

0

1

0

*2
2
1*

2 i
i

k

i
i nnn

Marius Kloft: Alg&DS, Summer Semester 2016 8

• Two Examples
• Two Analysis Methods

– Accounting Method
– Potential Method

• Dynamic Tables
• SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016 9

Accounting Analysis

• Idea: We create an account for Q
• Operations put / withdraw a constant amount of “money”
• We choose these amounts such that the current state of

the account is always (throughout Q) an upper bound of
the actual cost of Q
– Let ci be the true cost of operation i, di its effect on the account
– We require

– Especially, the account must never become negative (or the
inequality at this point is broken)

• It follows: An upper bound for the account (d) is also an
upper bound for the true cost (c)

k

i
i

k

i
i dcnk

11
:1

Marius Kloft: Alg&DS, Summer Semester 2016 10

Application to mpop

• Assume dpush=2, dpop=0, dmpop=0
• Clearly, the account can never become zero
• Summing these up yields an upper bound on the real cost

– Clearly, dpush is an upper bound on cpush (which is 1)
– Idea: Whenever we push an element, we pay 1 for the push and 1

for the operation that will (at same later time) pop exactly this
element

• It doesn’t matter whether this will be through a pop or a mpop
– Thus, when it comes to a pop or mpop, there is always enough

money on the account (deposited by previous push’s)

• This proves:)(*2
11

nOndc
n

i
i

n

i
i

Marius Kloft: Alg&DS, Summer Semester 2016 11

Choose d‘s carefully

• Assume dpush=1, dpop=1, dmpop=1
– Assume Q={push,push,push,mpop(3)}
– ∑c=6 > ∑d = 4

• Assume dpush=1, dpop=0, dmpop=0
– Assume Q={push,push,mpop(2)}
– ∑c=4 > ∑d = 2

• Assume dpush=3, dpop=0, dmpop=0
– Fine as well, but not as tight (but also leads to O(n))

Marius Kloft: Alg&DS, Summer Semester 2016 12

Application to Bit-Counter

• Look at the sequence Q‘ of flips
generated by a sequence Q
– For every +1, we flip exactly once from 0

to 1 and perform a sequence of flips from
1 to 0

• There is no „flip to 1“ if we roll-over

00000000
00000001 1 1
00000010 2 3
00000011 1 4
00000100 3 7
00000101 1 8
00000110 2 10
00000111 1 11
00001000 4 15
00001001 1 16
00001010 2 18
…

Marius Kloft: Alg&DS, Summer Semester 2016 13

Application to Bit-Counter (Continued)

• Assume dflip-to-1=2 and dflip-to-0=0
– Clearly, dflip-to-1 is an upper bound to cflip-to-1
– Idea: When we flip-to-1, we pay 1 for

flipping and 1 for the back-flip-to-0 that
might happen at some later time in Q’

– As we start with only 0 and can backflip
any 1 only once, there is always enough
money on the account for the flip-to-0’s

– Thus, the account is an upper bound on
the actual cost

• As every operation in Q can pay at
most 2 (there is at most 1 flip-to-1), Q
is in O(n)

00000000
00000001 1 1
00000010 2 3
00000011 1 4
00000100 3 7
00000101 1 8
00000110 2 10
00000111 1 11
00001000 4 15
00001001 1 16
00001010 2 18
…

Marius Kloft: Alg&DS, Summer Semester 2016 14

• Two Examples
• Two Analysis Methods

– Accounting Method
– Potential Method

• Dynamic Tables
• SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016 15

Potential Method: Idea

• In the accounting method, we assign a cost to every
operation and compare aggregated accounting costs of ops
with aggregated real costs of ops

• In the potential method, we assign a potential Φ(D) to the
data structure D manipulated by Q

• As ops from Q change D, they also change D’s potential
• The trick is to design Φ such that we can (again) use it to

derive an upper bound on the real cost of Q

Marius Kloft: Alg&DS, Summer Semester 2016 16

Potential Function

• Let D0, D1, … Dn be the states of D when applying Q
• We define the amortized cost di of the i‘th operation as

di = ci + Φ(Di) – Φ(Di-1)
• We then can derive the amortized cost of Q as

• Rough idea: If we find a Φ such that (a) we obtain
formulas for the amortized costs for all individual di and (b)
Φ(Dn)≥Φ(D0), we have an upper bound for the real costs

n

i
ni

n

i
iii

n

i
i DDcDDcd

1
0

1
1

1

)()())()((

Marius Kloft: Alg&DS, Summer Semester 2016 17

Details: Always Pay in Advance

• Operations raise or lower the potential (~future cost) of D
• We need to find a function Φ such that

– 1: Φ(Di) depends on a property of Di
– 2: Φ(Dn)≥Φ(D0) [and we will always have Φ(D0)=0]
– 3: We can compute di = ci + Φ(Di) – Φ(Di-1) for any possible op

• As within a sequence we do not know its future, we also
have to require that Φ(Di) never is negative
– Otherwise, the amortized cost of the sequence Q[1-i] is no upper

bound in the real costs
• Idea: Always pay in advance

Marius Kloft: Alg&DS, Summer Semester 2016 18

Example: mpop

• We use the number of objects on the stack as its potential
• Then

– 1: Φ(Di) depends on a property of Di
– 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0
– 3: Compute di = ci + Φ(Di) – Φ(Di-1)

• If op is push: di = ci + 1 = 2
• If op is pop: di = ci – 1 = 0
• If op is mpop(k): di = ci – #elements_taken_from_stack = 0

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n)

e.g., both equaling k if at least k
elements are on stack

Marius Kloft: Alg&DS, Summer Semester 2016 19

Example: Bit-Counter

• We use the number of ‘1’s in the bitstring as its potential
• Then

– 1: Φ(Di) depends on a property of Di
– 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0
– 3: Compute di = ci + Φ(Di) – Φ(Di-1)

• Let the i’th operation incur one flip to 1 (or no flip to 1 if roll-over)
and ti flips to 0

• Thus, ci ≤ ti + 1
• If Φ(Di)=0, the this op has flipped all positions to 0, and previously

they were all 1 and we had Φ(Di-1)=k
• If Φ(Di)>0, then Φ(Di)=Φ(Di-1)-ti+1
• In both cases, we have Φ(Di) ≤ Φ(Di-1)-ti+1
• Thus, di = ci + Φ(Di) – Φ(Di-1) ≤ (ti+1) + (Φ(Di-1)-ti+1) - Φ(Di-1) = 2

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n)

Marius Kloft: Alg&DS, Summer Semester 2016 20

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016 21

Dynamic Tables

• We now use amortized analysis for something more useful:
Complexity of operations on a dynamic table

• Assume an array T and a sequence Q of insert/delete ops
• Dynamic Tables: Keep the array small, yet avoid overflows

– Start with a table T of size 1
– When inserting but T is full, we double |T|; upon deleting and A is

only half-full, we reduce |T| by 50%
– “Doubling”, “reducing” means: Copying data to a new location
– If the i’th operation is a insertion (or deletion), it costs either 1 or i

(depending on whether or not the array is full)
• Conventional WC analysis

– As i can be up to n for |Q|=n, the complexity of insertion is O(n)
– Complexity of any Q is O(n2)

Marius Kloft: Alg&DS, Summer Semester 2016 22

Example

1

1

1 2

1 2 3 4 5 6 7

1 2 3 4

1 2 3

insert

insert; insert

insert

insert; insert; insert

delete;delete;delete

delete

1 2

1 2 3 4

1 2 3 4

1 2 3 4

Marius Kloft: Alg&DS, Summer Semester 2016 23

With Potential Method

• Let num(T) be the current number of elements in T
• We use potential Φ(T) = 2*num(T) - |T|

– Intuitively a “potential”
• Immediately before an expansion, num(T)=|T| and Φ(T)=|T|, so there

is much potential in T (we saved for the expansion to come)
• Immediately after an expansion, num(T)=|T|/2 and Φ(T)=0; all

potential has been used, we need to save again for the next expansion
– Formally

• 1: Of course
• 2: As T is always at least half-full, Φ(T) is always ≥0

We start with |T|=0, and thus Φ(Tn)-Φ(T0)≥0

1: Φ(Di) depends on a property of Di
2: Φ(Dn)≥Φ(D0)
3: di = ci + Φ(Di) – Φ(Di-1)

Marius Kloft: Alg&DS, Summer Semester 2016 24

Continuation

• 3: Let’s study di = ci + Φ(Ti) – Φ(Ti-1) for insertions
• Without expansion

di = 1 + (2*num(Ti)-|Ti|) - (2*num(Ti-1)-|Ti-1|)
= 1 + 2*num(Ti)-2*num(Ti-1) - |Ti| + |Ti-1|
= 1 + 2 + 0
= 3

• With expansion
di = num(Ti) + (2*num(Ti)-|Ti|) - (2*num(Ti-1)-|Ti-1|)

= num(Ti) + 2*num(Ti) - |Ti| - 2*num(Ti-1) + |Ti-1|
= num(Ti) + 2*num(Ti) - 2*(num(Ti)-1) - 2*(num(Ti)-1) + num(Ti)-1
= 3*num(Ti) - 2*num(Ti) + 2 - 2*num(Ti) + 2 + num(Ti) – 1
= 3

• Thus, 3*n ≥ Σdi ≥ Σci and Q is in O(n) (for only insertions)

1: Φ(Di) depends on a property of Di
2: Φ(Dn)≥Φ(D0)
3: di = ci + Φ(Di) – Φ(Di-1)

Marius Kloft: Alg&DS, Summer Semester 2016 25

Intuition

• Consider accounting method
• For insert’, we deposit 3 because

– 1 for the insertion (the real cost)
– 1 for the time that we need to copy

this new element at the next
expansion

• These 1’s fill the account with |Ti|/2
before the next expansion

– 1 for one of the |Ti|/2 elements
already in A after the last expansion

• These fill the account with |Ti|/2
before the next expansion

• Thus, we have enough credit at
the next expansion

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 0 1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3

Marius Kloft: Alg&DS, Summer Semester 2016 26

Problem: Deletions

• Our strategy for deletions so far is not very clever
– Assume a table with num(T)=|T|
– Assume a sequence Q = {I,D,I,D,I,D,I …}
– This sequence will perform |T|+|T|/2+|T|+|T|/2+ … real ops
– As |T| is O(n), Q is in O(n2) and not in O(n)

• Simple trick: Wait until num(T)=|T|/4, then reduce T by
50%
– Leads to amortized cost of O(n) for any sequence of operations
– We omit the proof (see [Cor03])

Marius Kloft: Alg&DS, Summer Semester 2016 27

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL – Analysis

– Goal and idea
– Preliminaries
– A short proof

Marius Kloft: Alg&DS, Summer Semester 2016 28

Re-Organization Strategies

• Think of self-organizing lists again
• When searching an element, we change the list L

– As usual: Accessing the i’th element costs i
• Three popular strategies

– MF, move-to-front:
After searching an element e, move e to the front of L

– T, transpose:
After searching an element e, swap e with its predecessor in L

– FC, frequency count:
Keep an access frequency counter for every element in L and keep
L sorted by this counter. After searching e, increase counter of e
and move “up” to keep sorted’ness

Marius Kloft: Alg&DS, Summer Semester 2016 29

Notation

• Assume we have an arbitrary strategy A and a sequence S
of accesses on list L

• After accessing element i, A may move i as follows
– Consecutive swaps of i with (adjacent) predecessor (toward front)

or successor (toward back)
– Only swap i (multiple times), do not swap (j,k) with j≠i and k≠i
– When using strategy A, let FA(l) be the number of front-swaps of i

and XA(l) the number of back-swaps of i in step l
• This means: FMF/XMF for strategy MF, FT/XT … FFC/XFC
• Of course, ∀l: XMF(l)=XT(l)=XFC(l)=0

• Let CA(S) be the total access cost of A incurred by S
– Again: CMF for strategy MF, CT for T, CFC for FC

• Conventional WC analysis gives ⱯA: CA(S) is in O(|S|*|L|)

Marius Kloft: Alg&DS, Summer Semester 2016 30

Theorem

• Theorem (Amortized costs)
Let A be any self-organizing strategy for a SOL L, MF be
the move-to-front strategy, and S be a sequence of
accesses to L. Then

CMF(S) ≤ 2*CA(S) + XA(S) – FA(S) - |S|
• What does this mean?

– We don‘t learn more about the absolute complexity of A / MF
– But we learn that MF is quite good
– Any strategy following the same constraints (only series of swaps)

will at best be roughly twice as good as MF
• Usally XA(S)=0

– Despite its simplicity, MF is a fairly safe bet in whatever
circumstances (= sequences)

Marius Kloft: Alg&DS, Summer Semester 2016 31

Idea of the Proof

• We will compare access costs in L using MF and any A
• Think of both strategies running S on two copies of the

same initial list L
• After each step, A and MF perform different swaps, so all

list states except the first very likely are different
• We will compare list states by looking at the number of

inversions (“Fehlstellungen”)
– Actually, we shall only analyze how the number of invs changes

• We will show that the number of inversions defines a
potential of a pair of lists that helps to derive an upper
bound on the differences in real costs

Marius Kloft: Alg&DS, Summer Semester 2016 32

Content of this Lecture

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL - Analysis

– Goal and idea
– Preliminaries
– A short proof

Marius Kloft: Alg&DS, Summer Semester 2016 33

Inversions

• Let L and L‘ be permutations of the set {1, 2, …, n}
• Definition

– An unordered pair {i,j} is called an inversion of L and L‘ iff i and j
are in different order in L than in L‘ (for 1 ≤ i < j ≤ n)

– The number of inversions between L and L‘ is written inv(L, L‘)
• Remarks

– Different order: Once i before j, once i after j
– Obviously, inv(L, L’) = inv(L’, L)

• Examples: inv((1,2,3), (2,3,1)) = |{ {1,2}, {1,3} }| = 2
– inv((1,...,n), (n,…,1)) = n(n-1)/2

• Without loss of generality, we assume that L=(1,…,n)
– Because we only look at changes in number of inversions and not at

the actual set of inversions

Marius Kloft: Alg&DS, Summer Semester 2016 34

Sequences of Changes

• Assume we applied l-1 steps creating LMF using MF and
LA using A

• Let us consider the next step l, creating LMF’ and LA’

A B C

LA LMF

A B C

B . . . A . . . C B . . . C . . . A

LA’ LMF’B . A C A . B . . . C

l-1

1

Marius Kloft: Alg&DS, Summer Semester 2016 35

Inversion Changes

• How does l change the number of inv’s between LMF / LA?
• Can we compute inv(LMF’, LA’) from inv(LMF, LA)?

– Assume step l accesses element i from LA
– We may assume it is at position i
– Let this element i be at position k in LMF
– Access in LA costs i, access in LMF costs k
– After step l, A performs an unknown number of swaps; MF

performs exactly k-1 front-swaps

1 2 3 i a . . . b iLA LMF

position kposition i

i a . . . bLMF’?LA’

Marius Kloft: Alg&DS, Summer Semester 2016 36

Counting Inversion Changes 1

• Let Xi be the set of values
that are before position k in
LMF and after position i in LA

• Le Yi be the values before position k in LMF and before i in LA
– Clearly, |Xl| + |Yl| = k-1

• All pairs {i,c} with cXi are inversions between LA and LMF
– There may be more; but only those with i are affected in this step

• After step l, MF moves element i to the front
– Assume first that A does simply nothing
– All inversions {i,c} with cXi disappear (there are |Xl| many)
– But |Yl|=k-1-|Xl| new inversions appear
– Thus: inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl|
– But A does something

1 2 3 i

. i

LA

LMF

XiYi

k-1

iLMF’

Marius Kloft: Alg&DS, Summer Semester 2016 37

Counting Inversion Changes 2

• In step l, let A perform FA(l)
front-swaps and XA(l)
back-swaps

• Every front-swap (swapping i before any j) in LA decreases
inv(LMF’,LA’) by 1
– Before step l, j must be before i in LA (it is a front-swap) but after i

in LMF’ (because i now is the first element in LMF’)
– After step l, i is before j in both LA’ and LMF’

• Equally, every back-swap increases inv(LMF’,LA’) by 1
• Together: After step l, we have

inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l)

1 2 3 . . . j . i

i

LA

LMF‘

Before step l through MF through A

Marius Kloft: Alg&DS, Summer Semester 2016 38

Amortized Costs

• Let cl be the real costs of strategy MF for step l
• We use the number of inversions as potential function

Φ(LA,LMF)=inv(LA
l, LMF

l) on the pair LA, LMF
• Definition

– The amortized costs of step l, called dl, are
dl = cl + inv(LA

l, LMF
l) – inv(LA

l-1, LMF
l-1)

– Accordingly, the amortized costs of sequence S, |S|=m, are
∑dl = ∑cl + inv(LA

m, LMF
m) – inv(LA

0, LMF
0)

• This is a proper potential function
– 1: Φ depends on a property of the pair LA, LMF
– 2: inv() can never be negative, so Φ(LA

n,LMF
n) ≥ Φ(L,L)=0

• Let’s look at how operations change the potential

Was cl … was dl … we switch to OW notation

Marius Kloft: Alg&DS, Summer Semester 2016 39

Content of this Lecture

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL - Analysis

– Goal and idea
– Preliminaries
– A short proof (after much preparatory work)

Marius Kloft: Alg&DS, Summer Semester 2016 40

Putting it Together

• We know for every step l from S accessing i:
inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l)
and thus
inv(LMF’,LA’) - inv(LMF,LA) = -|Xl|+k-1-|Xl| - FA(l) + XA(l)

• Using the fact that cl=k for MF, we get amortized costs of
dl = cl + inv(LA’, LMF’) – inv(LA, LMF)

al = k - |Xl|+k-1-|Xl| - FA(l) + XA(l)
= 2(k-|Xl|) - 1 - FA(l) + XA(l)

• Recall that |Yl|=k-1-|Xl| are those elements before i in both
lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i
– There can be at most i-1 elements before position i in LA

• Therefore: dl ≤ 2i - 1 - FA(l) + XA(l)

Marius Kloft: Alg&DS, Summer Semester 2016 41

Putting it Together

• This is the central trick!
• Because we only looked at inversions (and hence the

sequence of values), we can draw a connection between
the value that is accessed and the number of inversions
that are affected

• Recall that |Yl|=k-1-|Xl| are those elements before i in both
lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i
– There can be at most i-1 elements before position i in LA

• Therefore: dl ≤ 2i - 1 - FA(l) + XA(l)

Marius Kloft: Alg&DS, Summer Semester 2016 42

Aggregating

• We also know the cost of accessing i using A: that’s i
• Together: dl ≤ 2CA(l) - 1 - FA(l) + XA(l)
• Aggregating this inequality over all al (hence S), we get

∑dl ≤ 2*CA(S) – |S| – FA(S) + XA(S)
• By definition, we also have

∑dl = ∑cl + inv(LA
m, LMF

m) – inv(LA
0, LMF

0)
• Since ∑cl = CMF(S) and inv(LA

0, LMF
0)=0, we get

CMF(S) + inv(LA
m, LMF

m) ≤ 2*CA(S) – |S| – FA(S) + XA(S)
• It finally follows (inv()≥0)

CMF(S) ≤ 2*CA(S) – |S| – FA(S) + XA(S)

Marius Kloft: Alg&DS, Summer Semester 2016 43

Summary

• Self-organization creates a type of problem we were not
confronted with before
– Things change during program execution
– But not at random – we follow a strategy

• Analysis is none-trivial, but
– Helped to find a elegant and surprising conjecture
– Very interesting in itself: We showed relationships between

measures we never counted (and could not count easily)
– But beware the assumptions (e.g., only single swaps)
– Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized

efficiency of list update and paging rules." Communications of the
ACM 28(2): 202-208.

